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ABSTRACT

_,le report summarizes the research undertaken at the University of

California Davis from 1977-1980 aimed at improving present

capabilities for computer simulation of turbulent recirculating

flows. Attention has been limited to two-dimensional flows and

principally to statistically stationary motion.

The work has been of two types: research aimed at improving the

turbulence model and work on the development of the numerical

solution procedure. The research on turbulence modelling has

explored separately the treatment of the near-wall sublayer and

the exterior (fully turbulent region) working within the framework

of turbulence closures requiring the solution of transport

equations for the turbulence energy and its dissipation rate. The

work on the numerical procedure, which has been based on the

Gosman-Pun program TEACH, has addressed the problems of

incorporating the turbulence model as well as such matters as the

extension to time-dependent flows, the incorporation of a 3rd-

order approximation of convective transport and the treatment of

non-orthogonal boundaries.

Most of the work has already been documented in the open

literature either as journal articles or as computer program

guides. The present report does not attempt to duplicate these

docum_nt_ but instead provides a summarizing review of the work

which ma_, serve both to capture the flavor of the project as a

whole and to provide a guide to the literature for those intending

a deeper examination.

i
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1. Introduction

The work summarized in this report covers the period August 1977-

January 3]st 1981. The research has been aimed at developing a

reliable, tested method for calculating turbulent ilows involving

separated-flow regions. Although the study has been confined to

two-dlmensional situations several different questions have been

addressed. Broadly these fall into one of two categories relating

either to how the turbulent mixing should be approximated (or

Umodelled") or to how the posed set of differential equations

could be accurately solved. Section 2 of this report considers

the latter question while Section 3 deals with the former. No

attempt is made to duplicate already documented work; where the

research results are published only an outline summary is

provided. Passages of the report that contain new (i.e. h}therto

unpublished) results or which provide a new perspective on the

published information are presented more fully.

2. Numerical Procedure for Elliptic Flow

2.1 The Startln 9 Point and a Summary of the Work

The computations of recirculatlng flows have been founded on the

Gosman-Pun two-dlmenslonal, steady, elliptic solver TEACH. In its

basic form it solves, by finite volume discretizatlon, the

Reynolds equations for plane two-dimenslonal or axisymmetric flow

employing primitive variables, using an upwind approximation of

convective transport and the SIMPLE algorithm (Patankar Ill). The

turbulence model built into the code is the hlgh-Reynolds-numbe_

form of the Jones-Launder [2] k- ¢ Boussinesq viscosity mc.del

matched to wall functions broadly (but not entirely) in accord

with the proposals of Launder and Spalding [3}.

I
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In the work undertaken for NASA tile following corrections,

adaptations and extensions to the basic TEACH code have been

int rod uced.

(i) The original TEACII Code was inconsistent in the

assumptions made about the relative location of the

velocity and pressure nodes. The velocity nodes are

defined as lying midway between pressure nodes. The

program also presumes, conversely, that the pressure

nodes are situated mid-way between velocity nodes.

For a uniform mesh the converse statement is obviously

true but not otherwise.

_ _ +'- -- e pressure nodes

• • • • _ x-directed velocity
nodes

The program was adapted to remove the presumption. It

turned out that this modification did not significantly

modify the results obtained, at any rate for the fairly

modest expansion ratios (- 1.2:1) employed.

(ll) Althcugh TEACH was set up for the backward-step

geometry we found a number of inconsistencies in the

treatment of corner control volumes where, in certain

cases, flow can occur through only part of a cell.

I I
I Note: flow occurs through only a

I _ -'_ I portion of lower face of
t._ I control volume and wall stress

__ _ is likewise annlied to only i

i %% a portion of this face.

\
I

I

!
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This modification h ld only a small influence on the

computed flow field f r the backward step though Durst

_ and Rastogi [4] found important differences for flow over

an isolated rectangula _ sectioned block resting on a plane

surface. (In the latter case there are strong y-direction

velocities just in front of the rib and the x-direction

velocity is also large).

(Ill) Adaptations to incorporate the modified set of wall

functions due to Chieng and Launder []3].

!

(iv) Adaptations to include an algebraic stress model (ASM)

as an alternative to the k- ¢ BVM.

(v) Inclusion of tlme-dependent terms.

(vl) Adaptation to allow computation of confined backward-

: facing steps with non parallel walls.

! The ensemble of changes noted above are incorporated in a program

VAST-STEP (Viscous and _Igebraic-Stress Turbulent Simulatlons with

_ a Teach Elllptic _rogram). i

We summarize briefly in the following sections the work entailed

in (Ill) - (vl). More comprehensive accounts are given by Sindlr

[5], [6].

Before turning to these topics we mention two items which, though

explored during our research, were finally not included in the

computer program for elliptic flows. As the program of work

neared completion, papers began to appear which made it clear

that, in a number of recirculating flows, the use of upwind

differencing of convective terms led to unacceptably large

numerical errors. The use of quadratic upstream differencing of

Leonard [7], formally of 3rd order accuracy, was found to give i

i

I

uniformly better results. An initial attempt was therefore I
!
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C)

made to include this form following the recommendations o[ llan et

al. {8]. It was found however that for turbulent flow, stable

results could not be obtained. Now, Han et al. [8] had shown for

the abrupt pipe expansion (a very similar flow to the back._tep)

that upwind and quadratic-upwind differencing produced nearly the

same results (the reason being, apparently, that these are "thin"

recirculating flows where, apart from a small patch around the

reattachment point, the mean streamlines are oriented at only a

small angle with the mesh thus keeping false diffusion to

unimportant levels*. Accordingly, since there seemed no reason to

doubt that the numerical results obtained in our study with a 42 x

42 mesh were sensibly grid independent [6] the original upwind

approximation was retained.**

In the final year of the project a "multiscale w version of the

backstep code was created by Profe:.sor Hanjalic. The

incorporation of this model led to essentially the same computed

behaviour as with the single-scale scheme (due to the fact that

nearly all the turbulent energy finds itself in the "productionM

range - a problem developed and explained in Section 3). For this

reason therefore no formal 'guide' to this version has been

: developed.

"_ *The false-diffuslon coefficient is generall_, estimated as

proportional to the sine of twice the angle made by the flow
with respect to the grid line.

, **Subsequently, the winter's research grou_ has entirely abandoned

upwind differencln_. Of the various alternatives tested (power-
law differencinq [91, skew upwind differencina [iO1, locally
analytic differencln_ scheme [III% the ouadratic differenclno

appears to give, overall, the best results [12].

1983002110-006
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2.2 Incorporation of New Wall Functions

The term "wall function _ refers to the special formulae applied in
t

the 'finite-volume' equations for the wall-adjacent control

volumes for the turbulence variables and the velocity component

parallel to the wall. The wall functions attempt to include, in

rather simple form, the physics of the vlscosity-affected sublayer

and near-wall region where properties vary so rapidly with

distance. Strictly wall functions ought perhaps to be discussed

under section 3. They are presented here, however, because the

underlying physical model of the wall functions developed by

Chieng and Launder [13] is the same as the standard version [3];

it is in the way the physics are translated to formulae for the

near-wall cells that differences emerge.

The principal differences occur in the balance equation for

kinetic energy. The kinetic energy level near the wall is

dominated by generation and destruction processes which appear as

sources and sinks in the conservation equation. In local

equilibrium they are the only terms of any significance and,

outside the viscous layer, they both vary as the reciprocal of

distance from the wall. Since a finite volume method obtains the

'difference' equations by integration of the conservation equation

over the control volume it follows that cell-averaged values of

the production and dissipation are needed. In the original TEACH

wall function a cell-averaged value of production is obtained but

a point (i.e. the nodal) value of energy dissipation rate is used.

This inconsistent treatment is clearly undesirable. A further

i serious (though, as it turns out, partly compensating) error is

Q

!
I
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that the original wall functions did not distinguish the different

physical significance of the total shear stress, _ , and the

turbulent shear stress - pu--Q. In the viscous layer the former

, stays finite but the latter goes to zero. Now, apart from minor

terms, the turbulence energy generation rate for a point near the

wall is - puv_U/_y which clearly vanishes when u-_ becomes zero.

Because they used • in place of pu--Q the original wall functions

greatly over estimated the turbulence energy generation in the

near-wall cell (typically by a factor of 3 or 4).

I

The Chieng-Launder [13] wall functions incorporate a consistent

cell averaged treatment for both generatien and dissipation

including, for the latter, an exact expression for the rate of

energy dissipation in the viscous sublayer. The other difference

between the original TEACH wall functions and those incorporated

in VAST STEP is that the chartcteristic turbulent velocity scale

for the near wall region is taken as that at the outer edge of the

viscous sublayer rather than that at the node of the near-wall

cell. The latter choice was physically undesirable because it

meant that the characteristic velocity scale depended (greatly, in

the region of reattachment) on the size of the near-wall cell. In

the Chieng-Launder scheme the kinetic energy at the sublayer edge

was found by linear extrapolation of the values at the two nodes

closest to the wall. It must be admitted that this modification,

while logical, did not, from a practical point of view, reduce the

sensitivity of the near-wall flow properties to the size of the

near-wall cell; indeed it rendered the results somewhat more

sensitive. The reasons for this are numerous though seem to be

principally due to the assumed logarithmic law for velocity from

which the wall shear stress is obtained. Research continues on

i this problem at UMIST and interim results are documented in [14].

1983002110-008
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2.3 Incorporation of Alaebraic Stress Model

! The introduction of the algebraic stress model due to Gibson and

Launder [15] (omitting buoyant terms) in place of the Boussinesq

viscosity stress strain law initially caused divergence of the

solution procedure. Several approaches were tried before a

convergent treatment was evolved. The initial practice of putting

all terms relating to the Reynolds stresses into one of two source

arrays proved spectacularly unsuccessful. The next step was to

evaluate the Reynolds stresses on a staggered array of points as

shown in the diagram (for simplicity, for the case of a uniform

mesh).

U control volume I_,_.... V control volume _ ......
_V I
] T I
I

The staggering ensured that the shear stresses were evaluated at

exactly the positions they were needed when formulating a cell

momentum balance for both the U and V cells. This arrangement,

however, still did not produce a convergent field when used in

connection with the source terms. Finally the following

successful iteration sequence was developed. Firstly the four

dimensionless stress ratios, u-T/k, _'v/k etc. were obtained

simultaneously (and at the same points) by solving the 4 x 4

matrix. These ratios were used as the basis for finding the new

stresses at the next cycle of iteration. In obtaining these

values as much as possible of the stress-straln connection was

absorbed into an effective viscosity. For example, in a free

shear flow the form of the ASM adopted gives"

- c2 9U

-uv = i + P? [ k

1983002110-009
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Thus, in analysing the x-momentum equation, we treat

as an effective viscosity and the remainder of the stress strain

relation, involving _V/_x, is absorbed as a source. By proceeding

in this way unerringly convergent iteration was achieved.

2.4 Time-Dependent Explorations

After an initial phase of exploration with the elliptic program we

asked ourselves whether the turbulent flow downstream of a

backstep should really be treated as steady. There seemed to us

two possible situations that would necessitate a time dependent

approach: first, the obvious case where the flow was periodic and

second the case where the final state was steady but where two or

more solutions existed for the given boundary conditions and

where, therefore, we had to march through a true time transient to

discover which solution 'Nature' chose.

Our concern was stimulated by laser Doppler studles of laminar

flow in a double-step expansion [16], which showed both

asymmetries and t_.ne dependencies above certain limiting Reynolds

numbers. There was also felt to be a curious behaviour in the

heat transfer data downstream of an abrupt expansion reported by

Zemanick and Dougall [17]. For a diameter ratio of 0.43:1 the

maximum surface heat transfer rate (that occurs close to the

; position of reattachmen_) appeared to occur two diameters further

downstream at a Reynolds number of 40000 than at 20000. Such a

change suggested some definite alteration in the flow puttern;

the calculated distribution of Nusselt number, however, was

essentially the same at the two values of Re .

After discussions with the sponsor it was agreed that some exp-

1983002110-010



loration of the uniqueness and/or periodic nature of the backstep

flow be investigated for up to six months. The code was initially

transformed to an implicit time-dependent solver by sim ,

_ by _ _L_Id and inserting into the appro"¢,acereplacing b--{ _t - _t
source arrays; a_l other terms in the equation were evaluaLed _,t

the 'new' time level. Following the experience of a group at G.E.

Schenectady (Dr M Lubert, private communication) that this

implicit treatment entirely suppressed the formation of a Karman

vortex street behind a square sectioned cylinder, the code was

adapted so that the terms other than the time-dependent one could

be evaluated at any fraction = between the new time state (_ = 1 ;

implicit) and the old (= = O; explicit). The adaptations required

to the code are entirely straightforward but substantlal and are

documented in detail by Sindir [5], [6], In practice the value

=0.5 was adopted for all the subsequent calculations.

i

I There followed several months of effort searching for periodic and

or asymmetric flow behaviour in the double backstep flow. The

approach followed was to start from rest and gradually raise to

its asymptotic level the inlet velocity (several channel heights

upstream of the backstep). The resultant flow certainly showed a

degree of oscillation but the amplitude of these oscillations

diminished with time. A variant was to apply a slightly

asymmetric velocity at inlet thereby producing a correspondingly

non-symmetrlc flow field in the interior. When this had reached a

stationary state the asymmetry in the inlet profile was removed

and the computation continued to see whether a symmetric flow was

re-establlshed. On one occasion a spectacularly asymmetric flow

had been established which remained after the symmetric boundary

conditions were restored. Because of the relatively coarse mesh

used however the flow evidently suffered from false diffusion.

Subsequent attempts with a finer mesh did not succeed in

reproducing such a flow.

1983002110-011
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After the budgeted period had been spent it was felt that the

questions of non-uniqueness and periodicity were ones that could

easily absorb years of work and a very large computer budget. We

could afford neither and so we decided to proceed on theI

assumption that a steady flow model was a reasonable one for

examining the backward facing step. (Both time-dependent and

steady flow versions of VAST STEP are listed _n [6], he',ever.)

As a footnote to this part of our study we note that three groups

contributed computations of the turbulent backstep to the 1981

Stanford Conference using time-dependent procedures. Ha Minh et

al. [18] and Mansour and Morel [19] using the k - £ Boussinesq

turbulence model both obtained steady flow results. Mellor and

Celenligil [20] using a Reynolds stress closure, however, found

periodic behaviour. Clearly the question is still open.

i 2.5 Adaptation to allow computation of non-rectillnear walls#

i
We desired to extend the capabilities of the numerical procedure
to allow the computation of separated flow in weakly converging or

diverging passages. Three possibilities were considered foc

achieving this: a) an orthogonal curvi-!inear coordinate system;

b) a non-orthogonal mesh in which one set of coordinate lines was

straight parallel lines at right angles to the main flow; c) a

Cartesian grid where special balance equations were developed for

the edge control volumes which, along at least one of the walls

were of complex form as indicated in the sketch.

1
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flaying regard for the fact that an algebraically cumbersome

turbulence model was to be used (the ASM) it quickly seemed that
the last option _;as the best for that retained the relative

t
simplicity of the Cartesian mesh over the interior flow. However

we met no success in obtaining convergent behaviou r even for roof

angles as small as 4 degrees. Finally, following a suggestion by

Patankar [9] the sloping roof w_ _ treated as simply a succession

of steps. //i////i//////////|

This simplified approach certainly convcr_ed for both ASM and BVM

treatments and it is this which has been built nto VAST STEP. It

appears to be satisfactory provided that the angles of expar _ion

are small (no more than about 8 degrees) and provided that the

flow region of interest is not along the "stepped" wall itself.

These conditions were met in the Stanford Test Cases that were

tried. The view that the approach was "satisfactory" is based on

the fact that the computations [6] , [21] show a similar

disagreement with the data as were shown for the case of parallel

w_] Is.

The limitations of the method are evident however and there is

clearly a need, in the near future, to embed an ASM into an

arbitrary orthogonal coordinate system.

I

1
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3. Turbulence Modelling Research

3.1 The Overall Plan:

In the first year of work attention was confined to thin shear

flows. Moreover only the fully turbulent region was considered

for in the boundary layers in question the near-wall viscosity-

affected region was well described by the "universal" semi-

logarithmic velocity profile. The work was initially aimed at

placing on a firmer footing than hitherto the "multi-scale"

modelling approach which had been developed by Launder & Schiestel

[22, 23]. Section 3.2 outlines the principal featu.es of this

work. It was discovered, however, that most of the benefits that

• we felt accrued from the multi-scale treatment could in fact _Iso

be obtained with a single _ale treatment provided appropriate

modifications were introduced to the dissipation rate equation.

In the second year attention shifted to turbulent separated flows.

The handling of the near-wall region under conditions far removed

from local equilibrium via wall functions has already been

discussed in Section 2.2. Likewise, work on incorporating an

algebraic stress closure into the recirculatlng flow procedure

posed mainly numerical problems and was discussed in Section 2.3.

The third year's work combined the exploration of new closure

ideas and their evaluatlon in both reclrculating ant thin shear

flows. Several faults of the turbulence model were identified and

attempts made to remove them; these are discussed in Section 3.

1983002110-014
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3.2 The Multi-Scale Turbulence Closure - and its Single scale

derivative

The multi-scale approach was evolved to cope with the fact that

the local rate of energy dissipation, c , is not as directly

connected with the mean flow anu energetic motions as any of the

conventional rate equations for < suggested. The energy

containing part of the spectrum was thus divided into two portions

as indicated in figure 3.1: a production region and a transfer

region. This move naturally brought into focus the quantity c|,,

the transfer rate of energy from the former region to the latter.

The multi-scale model of Launder and Schiestel [22, 23] provided

independent transport equations for finding both Cp and

(quantities that would be equal if spectral equilibrium

prevailed). While ,p is associated with large-scale interactions

and is directly responsive to the mean strain field, _ is held to

feel these influences only indirectly through their effect on the

energy transfer rate, _p. These ideas are broadly in accord with

the accepted view of the dynamics of the turbulent energy

spectrum.

Work undertaken by Dr Hanjalic during his period of support as a

_Islting research engineer was directed at improving the

generality of this model. While the framework of the model

remained intact, the detailed form underwent considerable change

in order to provide, so far as possible, an internally consistent

physical picture. Moreover the range of flows was extended from

the three equilibrium shear flows considered by Launder and

Schlestel to include boundary layers and distorted grid

turbulence. The out-come of this study is r-ported in Hanjallc,

Launder and Schlestel [24].

1983002110-015



OF P_C:; c,:'.._:.;.Y

K, Ka
WAVE:NUMBER

Fig. 3.1 Division of Turbulent Energy Spectrum in
Multl- .';caleModel

i

1983002110-016



. 14 :'

Towards the end of the development work on the multi-scale

approach it was found (Hanjalic and Launder [25]) that practically

as good results were obtainable with the single scale scheme if

corresponding modifications to those devised for the multi-scale

closure were introduced to the (single) equation for the energy

transfer�dissipation rate. Only for the case of strongly acceler-

ated grid turbulence was there a decisive advantage from using the

multi-scale model and this example is far removed in kind from

most practically interesting shear flows.

The failure to achieve significantly better results with the

multi-scale model is believed to be due to the fact that, as

presently constructed, the energy in the "transfer" range amounts

to only about 10% of the total kinetic energy for a typically

shear flow. There is thus only marginal advantage to be gained

from recognizing the difference between the rate that energy is

fed to this transfer range and the rate that it leaves it through

viscous dissipation. The best way forward appears to be to re-

formulate the model placlng a greater proportion of the total

energy into the transfer range. This would necessitate that the

assumption of isotropic turbulence in the transfer range be

discarded, however; instead, an algebraic stress model for the

transfer-range stresses would be appropriate.

3.3 Final Explorations in Turbulence Modelling

By late 1979 we had thus concluded that provided we introduced a

new source term proportional to the square of the mean vortlcity

[24, 25] we could achieve essentially as good agreement in thin

shear flows with a single-scale model as with the multl-scale
t

scheme. The new term had a vital effect for it made the flow more

sensitive to normal-strain production than shear strain. The

modification allowed much improved prediction of the axis_metric

1983002110-017
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jet and the turbulent boundary layer in adverse pressure

!! gradients. In each case, due to the flow deceleration, the levels

of viscosity were reduced producing, for the former, lower rates

of spread and, for the latter, a diminution in wall fric%lon [25].

It was therefore decided to make this single-scale model the basis

for the recirculating flow studies.

When, however, the small-modifications to the e equation were

introduced into the backstep code (which, at that time, contained

only the BVM treatment) it was found, against all expectations,

that the computed reattachment length was substantially shortened,

indicating a pronounced increase in turbulent viscosity. This was

a quite unacceptable result, for the standard k- e model already

gave significantly too short reattachment lengths. The cause was

traced to the fact that, due to the invariant form of the new

source term it had the unfortunate property of strongly modifying

e levels in flows with streamline curvature. The sign of the

effect was the opposite of what is found to occur in practice,

e.g. when the fluid's angular momentum increased with radius

{stable stratification) the model strongly enhanced viscosity

levels.

We finally concluded that streamline curvature was such an abiding

feature of turbulent shear flows that it would be intolerable to

retain the proposed form of dissipation equation. Instead we

decided '_ include a term of the same type but with the sign

rever&.d. In fact for simplicity the form adopted with both the

ASM and BVM was

Source k 2 _/_Ui_2

1
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For the case of a simple shear flow the source takes the standard

BVM form. Computations were reported using eq (3.1) for the

various backward-step cases selected for the Stanford Conference

[21]. The ASM computations used in conjunction with the above

source gave the be_t agreement with experiment in the separated-

flow region of any of the contributed results for this case.

A further fault of the original £ equation was diagnosed in the

course of our work. In near-wall turbulence it is found that the

lengthscale, k_/2/e, produced by that equation became too large in

the vicinity of the wall as the flow approaches separation. It is

believed to be this property which is mainly responsible for the

failure to predict separation in various supersonic flows [26] and

for the excessive levels of heat transfer predicted downstream of

an abrupt pipe expansion [17] when the low-Reynolds-number version

of the BVM is used [12]. Although this property of the _ equation

had been known for some years [3] it was only with the detailed

measurements of East and Sawyer [27] that it became fully apparent

that this was an undesired characteristic. Their experiments of

equilibrium turbulent boundary layers in adverse pressure
3

gradients indicated that the near-wall values of k 2/¢ were, to a

close approximation, only a function of distance from the wall and

thus independent of the turbulence energy generation to

dissipation rate. We therefore attempted to find a further source

term for the ¢ equation that would counteract the tendency for the

predicted length scale to become too large. Various source terms

were explored involving typically spatial gradients of the kinetic

energy. While we succeeded in devising fairly successful forms

for boundary layer flows these uniformly led to disastrous predic-

tlons in free shear flows. An alternative approach we considered

was to let the turbulent Prandtl number for ¢ diffusion become a

function of the turbulence energy generation to dissipation rate.

An analytical study for the case where Ph was zero led to the

Idea that one might adopt the form

o = 1.3 c¢2 - c_l (3.2)
c c - P/

_2 £C£1
!
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This version did indeed lead to a small overall improvement in the

backstep computations without apparently harming the prediction of

free flows. However the introduction of P/E made it so difficult

to achieve converged numerical results that we finally did not

include the modification.

3.4 ClosJn 9 Remarks

Despite the considerable effort expended in turbulence model

development over the course of the research grant it must be

acknowledged that no fully satisfactory form of length-scale

determining equation was developed. We found no invariant way of

removing the tendency for the near-wall length to grow too large

without giving the equation the wrong sensitivity to streamline

curvature. At present the writer does not feel that a satis-

factory solution cannot be devised but clearly more thought and

careful testing is needed. The current practice of his group is

merely to overwrite the near-wall length scale at the value found

under local-equilibrium conditions (i.e. P = c ) should the

dissipation equation return length scales larger than that. We

would be interested to learn the experience of others with such a

modification.

The multi-scale approach, while of definite advantage in certain

rapidy distorted flows, does not, as currently constructed, have

any sufficiently marked practical benefits to justify its use in

shear flows (entailing, as it does, t_e solution of two extra

transport equations). The potential usefulness of the approach is

wJdely acknowledged but a formulation needs to be developed that

gives a more even distribution of energy between the two regions.

At present several groups are trying to understand the physical

processes of energy transfer across the spectrum more quantita-

tlvely as a preliminary to further model development.

1983002110-020



18

Acknow]egements

We take this final opportunity of thanking the authorities at NASA

Ames for its support of our research on turbulent separated flows.

The many interactions we have had with the staff of the

Experimental Fluid Mechanics Branch have always been supportive of

our efforts and we are grateful for the very tangible help and

encouragement that this has provided.

1983002110-021



19

References

Reference numbers preceded by a superscript mark indicate papers

concerned wholly (*) or partially (+) with reporting work

supported under the grant.

i. Patankar, S, V. Studies in Convection Vol.l, p] (ed. B. E.

Launder), Academic, London, 1975

2. Jones, W.P. and Launder, B.E. Int. J. Heat Mass Transfer 15,

301, 1972

3. Launder, B.E. and Spalding, D.B. Comp. Meth. Appl. Mech.

Engng 3, 269, 1974

4. Durst, F.J. and Rastogi, A.K. Turbulent Shear Flows - I, p20_

Springer Verlag, 1979

* 5. Sindir, M. A Guide to the STEP family of Programs, Internal

Rep., Mech. Eng. Dept. University of California Davis 1981

* 6. Sindir, M. Numerical Study of Turbulent Flows in Backward-i

facing step geometrics: Comparison of four models of

turbulence, PhD Thesis in Engineering, University of

California Davis, 1982

7. Leonard, B. Comp Meth. Appl. Mech Engng 2/_, 293, 1980

8. Han, T.Y., Humphrey, J.A.C. and Launder, B.E. Comp. Meth.

AppI. Mech Engng, 29, 81, 1981

:i 9. Patankar, S.V. Numerical Heat Transfer and Fluid Flow

McGraw Hill NY 1980

B

I0. Raithby, G.D. Comp. Meth. Appl. Mech. Engng 9, 153, 197K

1983002110-022



20
t

11. Wong, H.H and Raithby G.D. Num tteat Transfer 2, 139, 1979

12. Leonard, B.P. Comp Meth. Appl. Mech Engng 23, 293, ]980

* 13. Chieng, C.C. and Launder, B.E. Num. Heat Transfer, 5, ]982

14. Johnson, R.W. and Launder, B.E. Num. Heat Transfer, 5, 1982

15. Gibson, M.M. and Launder, B.E. J Fluid Mech. P6, 491, ]978

16. Durst, F., Melling, A. and Whitelaw, J.H. J Fluid Mech. 64.

II] , 1974

17. Zemanick, P. P. and Dougall, R.S. ASME J Heat Transfer 92C,

53, 1970

18. Ha Minh, H., Chaissaing, P. and Vandromme, D. Computation of

Recirculating Flows Proc. Stanford HTTM-AFOSR Conference on

I Complex Turbulent Flows, Stanford, 1981.

19. Mansour, N. N. and Morel, T. Computations for a curved shear

layer and a backward-faclng step using a .... turbulence model

Proc. Stanford HTTM-AFOSR Conference on Complex Turbulent

Flows, Stanford, 1981.

i 20. Mellor, G.L. and Celenligll, M.C. Computer Summary Proc.

! Stanford HTTM-AFOSR Conference on Complect Turbulent Flows,

Stanford 1981

+ 21. Launder, B. E., Leschzlner, M.A. and Sindir, M.M. 'The UMIST-

UCD ComFutations for the AFOSR-HTTM-Stanford Conference on Complex

Turbulent Flows' Proceedings Stanford-HTTM-AFOSR Conference on

Complex Turbulent Flows, Stanford, 1981.

22. Launder, B.E. and Schiestel, R. C.R. Acad. Sci. Ser.A 286, 709,

1978.

1983002110-023



A

q

i

21

23. Launder, B.E. and SchJestel, R. C.R.Acad. Sci. Ser.A, 288,

127, 1979.

I * 24. Hanjali_, K., Launder, B.E. and Schiestel, R. Turbulent
|

Shear Flows - 2, p36, Snringer Verlag, Heidelberg 1980.

• 25. Hanjali6, K. and LaJnder, B.E. J. Fluids Eng. 102, 1980.

i 26. Murphy, J. and Rubesln, M. Paper 12, AGARD, Conference

Proceedings (CP) 271, 1979.

27. East, L. and Sawyer, R. Paper 6, AGARD, Conference Proceedings

(CP) 271, 1979.
I
j
!

1983002110-024


